
Viability of HPTN
A domain specific language for Tensor Networks.

Rahul Manavalan
Masters student at the Chair for Scientific Computing

Technical University of Munich
rahul.manavalan@tum.de

Abstract—There is increasing need for more performant im-
plementations of Tensor Network algorithms. Recent algorithmic
advances in dense tensor contraction can be exploited to further
the efficiency of existing implementations of Tensor Networks. In
this work,the question of viability of a high performance DSL for
tensor networks based on a high performance tensor contraction
software package is examined.

Index Terms—high performance, domain specific language,
tensor networks, HPTT, TCL

I. INTRODUCTION

Tensor Networks have been successfully applied to
study strongly correlated systems. They have also found
prevalence in quantum information theory. As a result,
efficient implementations of the algorithms in the domain of
Tensor Networks is desired.

The landscape of tensor computation software [1] includes
new algorithmic gains with respect to performance. The Tensor
Contraction Library - TCL [2] which introduces among other
things, GETT (GEMM-like Tensor-Tensor multiplication algo-
rithm) is one such example. TCL performs tensor contraction
using algorithms that are appropriate for the problem and the
resources available at run time.

Utilization of this library to the kernels of Tensor Network
computation could result in improved performance. It also
poses questions on the efficacy of the asymptotic bounds in the
tensor contractions, as prescribed by conventional complexity
analysis. In this work, we seek to address these questions,
while justifying the need for a new domain specific language
for Tensor Networks.

II. APPROACH

A. Kernels of 1D Tensor Network Computations

Matrix Product States (MPS) or Tensor Train model
strongly correlated atoms on a one dimensional lattice. The
treatment of the 1D case for the investigation is justified,
since an insignificant improvement would disqualify its use
for higher dimensional ansatzae.

Subsequently, subroutines(kernels) are identified that recur
in MPS algorithms such as left orthonormalization, right or-
thonormalization and Density Matrix Renormalization Group.

Dr.Edoardo Di Napoli, Dr.Matteo Rizzi

We reserve λ,ρ,ϑ for the left update, right update and the ef-
fective Hamiltonian update in the DMRG algorithm. Similarly
π,ω denote left isometrization and the right isometrization of
a tensor in the MPS train.

B. Design of Experiments

Validation of the performance improvement and verifying
asymptotic complexity entails implementation of kernels.
TCL offers interfaces in C,C++ and Python. An early
choice of prototyping the kernels with the Python interface
resulted in underwhelming performances. Consequently, all
implementations were ported to C++.

The question of performance is answered by comparing
the runtime of kernels implemented using TCL with
corresponding implementations using flexmps. 1

It is also of interest to determine if TCL’s algorithms
improve the runtime complexity of different tensor contraction
orderings.2 This is achieved by contracting the participant
tensors in the kernels, in different permutation sequences and
evaluating the relative discrepancy in the run time across the
different libraries.

With respect to the parameters for the experiment, n
denotes the bond dimensions of the Tensor Train, s the
internal dimensions of the wavefunction, and d the number
of transition states in the MPO.

Bearing in mind that TCL is a dense tensor contraction
library, the sparsity optimizations of flexmps were turned off.
Furthermore the benchmarks were realized on randomized
entries for the MPS and the MPO train elements.

III. NOMENCLATURE OF KERNELS

A. DMRG kernels

1) UpdateL: The UpdateL kernel (Fig.1) contracts a 3d
tensor block from the previous iteration with two isometrized
tensors from the MPS trains and the MPO tensor. The kernel

1Flexmps is a fortran based library for Tensor Networks.
2Contraction of Tensors A,B,C can have different complexities when

executed in different orders, i.e. while tensor contraction is associative, its
complexity is not.



has its origins in the left pass of the DMRG algorithm.

Fig.1 reveals the enumerations for the participants of tensor
contraction in the kernel. The block is symbolized as 0, the
Isometry of the top MPS as 1,the MPO as 2 and the Isometry
of the bottom MPS as 3.

Fig. 1. λ kernel - Update left

2) UpdateR: The UpdateR kernel is symmetric to the
UpdateL kernel. The notations used in the previous kernel is
analogous. In addition the complexity is also similar. However,
it is of interest to study this kernel, since the memory access
pattern is different in comparison to an UpdateL kernel.

Fig. 2. ρ kernel - Update right

3) UpdateH: Occurrence of this kernel is in the update
of the central tensors in the DMRG algorithm. Adhering to
convention, we denote block 1 as 0, the MPS tensor 1,the
MPO tensor 2 and the second block as 3.

Due to the prevalence of five indices that model bond
dimensions, certain permutations in this kernel (0231 for
instance), requires exponential amounts of memory to store
the participant tensors. As a result, those permutations that
violate the low rank approximation are excluded from analysis.

Fig. 3. ϑ kernel - Update Effective Hamiltonian

B. IsoL kernel

An element of an MPS train is isometrized using the
IsoL kernel. It follows from Fig(4) that given a matrix R
and a tensor A, one can reformulate this expression as an
Isometry I and a residual matrix Ri+1 using Singular Value
Decomposition.

Fig. 4. π kernel - Isometrization Left

C. IsoR kernel

The IsoR kernel is a symmetric counterpart to the IsoL
kernel. We include this in our investigation, as this has an
alternative access pattern.

Fig. 5. ω kernel - Isometrization right

IV. OBSERVATIONS

A. UpdateL kernel - Runtime

Fig(6) indicates reduced runtime in the TCL implementation
for the λ kernel. The flexmps implementation to the right
(Fig(6)) strongly agrees with the characteristics from com-
plexity analysis. On the other hand, the TCL implementation
shows weaker agreement.

Fig. 6. Runtime comparison - λ kernel



B. UpdateR kernel - Runtime

Being symmetric to λ kernel, the observations are similar.
It is interesting to note that for smaller bond dimensions, the
runtime for ρ kernel is approximately half the runtime for λ
kernel. However, this overhead in transposition diminishes, as
the bond dimensions increases and in turn the computational
costs begin to dominate.

Fig. 7. Runtime comparison - ρ kernel

C. UpdateH kernel - Runtime

Besides the apparent improvement in the run time, a change
in the complexity characteristics is observed. For permutation
sequence 0213, the tcl implementation is much faster in
relative measure with the flexmps counterpart.

Fig. 8. Runtime comparison - ϑ kernel

D. Speedup

The λ and ρ kernels report a speedup of ≈ 20 for the
largest bond dimension.(Fig9, Fig10) It is interesting to note
that the tcl implementation changes the complexity coefficients
of the algorithm as evidenced by the fact that the permutation
sequence 0312 exhibits the most speedup. However further
analysis reveals that despite the fact, the sequence 0123
exhibits the fastest run-time.

Fig. 9. Speedup - λ kernel

Fig. 10. Speedup - ρ kernel

The ϑ kernel reports an average speedup of ≈ 10 for the
largest bond dimension.(Fig11)

Fig. 11. Speedup - ϑ kernel

V. CONCLUSION

1) Initial benchmarking suggests improvements in the per-
formance of kernel computations for relatively larger
bond dimensions.

2) The use of the algorithms in TCL seem to diminish the
bottleneck caused by large complexities in the kernels.

The results indicate that a reimplementation of the TN
library features from flexmps using TCL is warranted.3

However, neither TCL nor the underlying transposition
library HPTT [3] is actively maintained. Therefore, it would
be logical to adapt these algorithms to a more modern
framework in the form of the Julia Programming Language
[4].

A domain specific language has the nature of a ”black box”.
Julia’s multiple dispatch mechanism would allow exploration

3This would mean that flexmps needs to be ported from Fortran to C++.



of several algorithms and efficient code generation, while
being oblivious to the interface. Furthermore, efficient
integration to heterogeneous architecture can also be realized
within the Julia ecosystem.

Lastly, porting to Julia would serve as an ideal comparison
benchmark as some of the existing TN libraries such as Ten-
sorToolkit [5] and iTensors [6] already have implementations
in Julia.

WHY DO WE NEED A NEW DSL FOR TN?

A DSL with symbolic representations of the elements of
a Tensor Network4 computation enjoys the following advan-
tages.

1) Code generation is the prerogative of the compiler,
ensuring that the code is always efficient.

2) Tuning the computation for the problem size and the
available run-time resources is internally handled, deter-
ring the user from ever worrying about implementations
on heterogeneous architecture.

3) More significantly, the competitor libraries [5] [6] do not
support this feature. As a consequence, the new DSL’s
existence (development) is merited.

ACKNOWLEDGMENT

Special thanks is directed towards Dr. Edoardo Napoli and
Prof. Dr. Matteo Rizzi for their unwavering faith and endless
patience. I would also like to thank Dr.Ivo Kabadshow for his
guidance during the JSC-GSP 2021.

REFERENCES

[1] C. Psarras, L. Karlsson, and P. Bientinesi, “The landscape of software
for tensor computations,” CoRR, vol. abs/2103.13756, 2021. [Online].
Available: https://arxiv.org/abs/2103.13756

[2] E. Peise and P. Bientinesi, “The elaps framework: Experimental
linear algebra performance studies,” The International Journal of High
Performance Computing Applications, vol. 33, no. 2, pp. 353–365, 2019.
[Online]. Available: https://doi.org/10.1177/1094342018763042

[3] P. Springer, T. Su, and P. Bientinesi, “HPTT: A high-performance tensor
transposition C++ library,” CoRR, vol. abs/1704.04374, 2017. [Online].
Available: http://arxiv.org/abs/1704.04374

[4] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, “Julia: A fresh
approach to numerical computing,” CoRR, vol. abs/1411.1607, 2014.
[Online]. Available: http://arxiv.org/abs/1411.1607

[5] J. Hageman, “Tensortoolkit.jl - a julia package.”
[6] M. Fishman, S. R. White, and E. M. Stoudenmire, “The ITensor software

library for tensor network calculations,” 2020.

4An analogue of ModelingToolkit.jl. See https://mtk.sciml.ai/stable/


