
Chair of Scientific Computing in Computer Science
School of Computation, Information and Technology
Technical University of Munich

Systems identification with random feature neural networks
Rahul Manavalan, Daniel Lehmberg, and Felix Dietrich

1. Erik Lien Bolager, Iryna Burak, Chinmay Datar, Qing Sun, Felix Dietrich. (2023). Sampling weights of deep
neural networks. Pre-print: https://arxiv.org/abs/2306.16830. Accepted at NeurIPS, 2023.

2. Noack, B., Afanasiev, K., Morzynski, M., Tadmor, G., Thiele, F. (2003). A hierarchy of low-dimensional
models for the transient and post-transient cylinder wake. Journal of Fluid Mechanics, 497, 335-363.
doi:10.1017/S0022112003006694

Random feature neural networks.
If x ∈ Ω ⊂ Rd, a generic function g : Ω 7→ Rp can be approximated using a single
hidden layer neural network.

ĝx ≈
L∑

l=1
alϕl(x) :=

L∑
l=1

al σ(W T
l x − bl) (1)

Here al ∈ Rp×1, Wl ∈ R1×d, bl ∈ R and σ is the activation function (we use tanh here).
Compare this with a kernel regression model.

g̃x ≈ Kxy [Kyy + Λ]−1 gy (2)
K ij

xy = κ(xi − yj) (3)

Here κ is a suitably chosen covariance kernel.
It follows that Wl, bl are functions of z ∈ Ω×Ω. Based on the work from Bolager et. al[1],
one can then evaluate the parameters that depend on randomly sampled zr ∼ UΩ×Ω
using

Wl = α
z1

l − z2
l

∥z1
l − z2

l ∥2; bl = β + ⟨Wl, z1
l ⟩ (4)

α, β depend on the choice of σ. al is obtained by solving a least squares problem.
In this inference procedure, ĝ constitutes a random feature neural network (RFNN).

Kernel methods

Neural networks

RFNN

Figure 1 R2 domain supports for kernel methods with κ(x−y), neural networks, random feature
neural networks.

Method.
Consider a dynamical system,

d

dt
x(t) = f (x) (5)

x(0) = x0 ∈ Rd (6)

Given a time-series of observables [x0, x1, ..., xT ], infer f̂ (x) ≈ f (x) using a random
feature neural network.

Algorithm 1: SI-RFNN – Systems identification with random feature neural networks.
Require: Reference data points, M = [x0, x1, ..., xT ], t = [t0, t1, ..., tT ]

Query points Q = [y1, y2, ..., yP ]

1: Approximate dx(t)
dt with Df = FD(M, t) – a suitable finite difference scheme.

2: Sample the weights and biases – W1:L, b1:L of f̂ (x; W, b) using subroutine 1.
3: Assemble Φ := ϕ1:L using eq. (1).
4: Solve for minimizer a∗ = arg mina∈A ∥Df − aTΦ∥2 with suitable regularization.
5: Assemble Φy, using eq. (1).

6: return f̂y := aT
∗ Φy

Subroutine 1: Sample parameters
Require: Reference datapoints M , its finite difference approximation Df .

1: Evaluate sampling density ρ(z) using subroutine 2.
2: Sample z1:L ∼ Pρ(z)
3: Evaluate W1:L, b1:L using eq. (4).
4: return W1:L, b1:L

Subroutine 2: Evaluate sampling density
Require: Reference datapoints M , its finite difference approximation Df , sampling

frequency q, sampling heuristic function H : x1 × x2 × Dx1 × Dx2 7→ R.

1: Draw q samples (x1
1:q, x2

1:q) ∼ M × M uniformly.
2: Lookup the corresponding finite difference approximations DFx1

1:q, DFx2
1:q

3: Evalute hl := H(x1
l , x2

l , DFx1
1:q, DFx2

1:q) for l ∈ 1 : q.
4: Assign ρ := [h1, .., hl, ...hq].
5: return ρ

Numerical experiments.
Learning flow directly

Temperature estimation – residential heating system Tout : R12 7→ R3

Room A

Room B

Room C

Figure 2 Layout

Let Tin, Qc, Qh, I be the input temperature, cooling
rate, heating rate and occupancy of the three com-
partments. The target functions is:

Tout(t) = g (Tin(t), Qc(t), Qh(t), I(t)) (7)

Figure 3 Evolution of temperature over time in three compartments of a residential building.

Learning vector field

Lotka Volterra model

Figure 4 Actual and learned vector field coefficients of a Lotka Volterra model.

Lorenz attractor

Figure 5 Actual and learned vector field coefficients of the Lorenz attractor.

Vortex shedding - a mean field model[2]

Figure 6 a) Snapshot of vortex shedding simulation b) Principal orthogonal directions

Figure 7 a) Trajectory b) Vector field coefficients c) Trajectory from the learned vector field.


