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Random feature neural networks.
If x ∈ Ω ⊂ Rd, a generic function g : Ω 7→ Rp can be approximated using a single
hidden layer neural network.

ĝx ≈
L∑

l=1
alϕl(x) :=

L∑
l=1

al σ(W T
l x − bl) (1)

Here al ∈ Rp×1, Wl ∈ R1×d, bl ∈ R and σ is the activation function (we use tanh here).
Compare this with a kernel regression model.

g̃x ≈ Kxy [Kyy + Λ]−1 gy (2)
K ij

xy = κ(xi − yj) (3)

Here κ is a suitably chosen covariance kernel.
It follows that Wl, bl are functions of z ∈ Ω×Ω. Based on the work from Bolager et. al[1],
one can then evaluate the parameters that depend on randomly sampled zr ∼ UΩ×Ω
using

Wl = α
z1

l − z2
l

∥z1
l − z2

l ∥2; bl = β + ⟨Wl, z1
l ⟩ (4)

α, β depend on the choice of σ. al is obtained by solving a least squares problem.
In this inference procedure, ĝ constitutes a random feature neural network (RFNN).

Kernel methods

Neural networks

RFNN

Figure 1 R2 domain supports for kernel methods with κ(x−y), neural networks, random feature
neural networks.

Method.
Consider a dynamical system,

d

dt
x(t) = f (x) (5)

x(0) = x0 ∈ Rd (6)

Given a time-series of observables [x0, x1, ..., xT ], infer f̂ (x) ≈ f (x) using a random
feature neural network.

Algorithm 1: SI-RFNN – Systems identification with random feature neural networks.
Require: Reference data points, M = [x0, x1, ..., xT ], t = [t0, t1, ..., tT ]

Query points Q = [y1, y2, ..., yP ]

1: Approximate dx(t)
dt with Df = FD(M, t) – a suitable finite difference scheme.

2: Sample the weights and biases – W1:L, b1:L of f̂ (x; W, b) using subroutine 1.
3: Assemble Φ := ϕ1:L using eq. (1).
4: Solve for minimizer a∗ = arg mina∈A ∥Df − aTΦ∥2 with suitable regularization.
5: Assemble Φy, using eq. (1).

6: return f̂y := aT
∗ Φy

Subroutine 1: Sample parameters
Require: Reference datapoints M , its finite difference approximation Df .

1: Evaluate sampling density ρ(z) using subroutine 2.
2: Sample z1:L ∼ Pρ(z)
3: Evaluate W1:L, b1:L using eq. (4).
4: return W1:L, b1:L

Subroutine 2: Evaluate sampling density
Require: Reference datapoints M , its finite difference approximation Df , sampling

frequency q, sampling heuristic function H : x1 × x2 × Dx1 × Dx2 7→ R.

1: Draw q samples (x1
1:q, x2

1:q) ∼ M × M uniformly.
2: Lookup the corresponding finite difference approximations DFx1

1:q, DFx2
1:q

3: Evalute hl := H(x1
l , x2

l , DFx1
1:q, DFx2

1:q) for l ∈ 1 : q.
4: Assign ρ := [h1, .., hl, ...hq].
5: return ρ

Numerical experiments.
Learning flow directly

Temperature estimation – residential heating system Tout : R12 7→ R3
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Figure 2 Layout

Let Tin, Qc, Qh, I be the input temperature, cooling
rate, heating rate and occupancy of the three com-
partments. The target functions is:

Tout(t) = g (Tin(t), Qc(t), Qh(t), I(t)) (7)

Figure 3 Evolution of temperature over time in three compartments of a residential building.

Learning vector field

Lotka Volterra model

Figure 4 Actual and learned vector field coefficients of a Lotka Volterra model.

Lorenz attractor

Figure 5 Actual and learned vector field coefficients of the Lorenz attractor.

Vortex shedding - a mean field model[2]

Figure 6 a) Snapshot of vortex shedding simulation b) Principal orthogonal directions

Figure 7 a) Trajectory b) Vector field coefficients c) Trajectory from the learned vector field.


